21 research outputs found

    Diffusion-limited reactions and mortal random walkers in confined geometries

    Full text link
    Motivated by the diffusion-reaction kinetics on interstellar dust grains, we study a first-passage problem of mortal random walkers in a confined two-dimensional geometry. We provide an exact expression for the encounter probability of two walkers, which is evaluated in limiting cases and checked against extensive kinetic Monte Carlo simulations. We analyze the continuum limit which is approached very slowly, with corrections that vanish logarithmically with the lattice size. We then examine the influence of the shape of the lattice on the first-passage probability, where we focus on the aspect ratio dependence: Distorting the lattice always reduces the encounter probability of two walkers and can exhibit a crossover to the behavior of a genuinely one-dimensional random walk. The nature of this transition is also explained qualitatively.Comment: 18 pages, 16 figure

    High angular resolution mm- and submm-observations of dense molecular gas in M82

    Get PDF
    Researchers observed CO(7-6), CO(3-2), HCN(3-2) and HCO+(3-2) line emission toward the starburst nucleus of M82 and have obtained an upper limit to H13CN(3-2). These are the first observations of the CO(7-6), HCN(3-2) and HCO+(3-2) lines in any extragalactic source. Researchers took the CO(7-6) spectrum in January 1988 at the Infrared Telescope Facility (IRTF) with the Max Planck Institute for Extraterrestrial Physics/Univ. of California, Berkeley 800 GHz Heterodyne Receiver. In March 1989 researchers used the Institute for Radio Astronomy in the Millimeter range (IRAM) 30 m telescope to observe the CO(3-2) line with the new MPE 350 GHz Superconductor Insulator Superconductor (SIS) receiver and the HCN(3-2) and HCO+(3-2) lines with the (IRAM) 230 GHz SIS receiver (beam 12" FWHM, Blundell et al. 1988). The observational parameters are summarized

    Grain Surface Models and Data for Astrochemistry

    Get PDF
    AbstractThe cross-disciplinary field of astrochemistry exists to understand the formation, destruction, and survival of molecules in astrophysical environments. Molecules in space are synthesized via a large variety of gas-phase reactions, and reactions on dust-grain surfaces, where the surface acts as a catalyst. A broad consensus has been reached in the astrochemistry community on how to suitably treat gas-phase processes in models, and also on how to present the necessary reaction data in databases; however, no such consensus has yet been reached for grain-surface processes. A team of ∌25 experts covering observational, laboratory and theoretical (astro)chemistry met in summer of 2014 at the Lorentz Center in Leiden with the aim to provide solutions for this problem and to review the current state-of-the-art of grain surface models, both in terms of technical implementation into models as well as the most up-to-date information available from experiments and chemical computations. This review builds on the results of this workshop and gives an outlook for future directions

    Fitting the integrated Spectral Energy Distributions of Galaxies

    Full text link
    Fitting the spectral energy distributions (SEDs) of galaxies is an almost universally used technique that has matured significantly in the last decade. Model predictions and fitting procedures have improved significantly over this time, attempting to keep up with the vastly increased volume and quality of available data. We review here the field of SED fitting, describing the modelling of ultraviolet to infrared galaxy SEDs, the creation of multiwavelength data sets, and the methods used to fit model SEDs to observed galaxy data sets. We touch upon the achievements and challenges in the major ingredients of SED fitting, with a special emphasis on describing the interplay between the quality of the available data, the quality of the available models, and the best fitting technique to use in order to obtain a realistic measurement as well as realistic uncertainties. We conclude that SED fitting can be used effectively to derive a range of physical properties of galaxies, such as redshift, stellar masses, star formation rates, dust masses, and metallicities, with care taken not to over-interpret the available data. Yet there still exist many issues such as estimating the age of the oldest stars in a galaxy, finer details ofdust properties and dust-star geometry, and the influences of poorly understood, luminous stellar types and phases. The challenge for the coming years will be to improve both the models and the observational data sets to resolve these uncertainties. The present review will be made available on an interactive, moderated web page (sedfitting.org), where the community can access and change the text. The intention is to expand the text and keep it up to date over the coming years.Comment: 54 pages, 26 figures, Accepted for publication in Astrophysics & Space Scienc

    Physical Processes in Star Formation

    Get PDF
    © 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00693-8.Star formation is a complex multi-scale phenomenon that is of significant importance for astrophysics in general. Stars and star formation are key pillars in observational astronomy from local star forming regions in the Milky Way up to high-redshift galaxies. From a theoretical perspective, star formation and feedback processes (radiation, winds, and supernovae) play a pivotal role in advancing our understanding of the physical processes at work, both individually and of their interactions. In this review we will give an overview of the main processes that are important for the understanding of star formation. We start with an observationally motivated view on star formation from a global perspective and outline the general paradigm of the life-cycle of molecular clouds, in which star formation is the key process to close the cycle. After that we focus on the thermal and chemical aspects in star forming regions, discuss turbulence and magnetic fields as well as gravitational forces. Finally, we review the most important stellar feedback mechanisms.Peer reviewedFinal Accepted Versio

    Tracking Water, O

    No full text
    We have expanded our model of photodissociation regions (PDRs) to include the freezing of O- and C-bearing species on dust grains, simple grain surface chemistry, and desorption processes, including photodesorption, that may be important in the surface layers of diffuse, translucent, and dense molecular clouds. The main result of including these processes is that a number of important gas-phase species, including H2O and O2, peak in abundance at AV ~ few into the cloud. Most of the gas-phase column, and most of the emission, from these species arises in the peak. Closer to the surface, H2O and O2 are photodissociated, while deeper into the cloud, they freeze out onto grain surfaces. The result is H2O and O2 column densities that are nearly constant for a wide range of gas densities, n, and for FUV fields G0 â‰Č\lesssim 500. The roughly constant column densities of these species provides an explanation for the low line-of-sight average abundances of H2O observed toward GMCs. The model results also suggest that regions of high FUV field are the best places to search for O2

    Observations of CO isotopic emission and the far-infrared continuum of Centaurus A

    No full text
    Maps are presented of the (C-12)O (1-0) line and the 100 and 50 micron far-IR continuum emission of Centaurus A, along with measurements of the(C-12)O (2-1), (C-13)O, and the C(O-18) lines at selected positions. The molecular gas is concentrated in the dust lane of Cen A, and the center of the rotation is the IR/radio nucleus. The distribution of the emission is in agreement with a tilted disk with an inclination of 78 +or - 3 deg and a total molecular gas mass of about 2-3 million solar.The velocity dispersion of the material is of the order of 60 km/s and is about constant along the disk. No evidence is found for strong velocity disturbances at the center. The absorption lines indicate that the properties of giant molecular clouds in the dust lane are comparable to those in the Galaxy. A simple one-component model of the molecular gas at the center indicates that the molecular emission arises from dense, optically thick gas
    corecore